Perceptrones

Otros algoritmos de entrenamiento para redes neuronales simples

Adaline: Regla LMS (mínimos cuadrados)

Reglas de Ho-Kashyap

  • Ho, Y. C. & Kashyap, R. L. (1965): "An algorithm for linear inequalities and its applications." IEEE Transactions of Electronic Computers, 14:683–688. DOI https://doi.org/10.1109/PGEC.1965.264207
  • Hassoun, M. H. & Song, J. (1992): "Adaptive Ho-Kashyap rules for perceptron training." IEEE Transactions on Neural Networks, 3(1):51–61. DOI https://doi.org/10.1109/72.105417

Thermal perceptron (enfriamiento simulado)

P-Delta Rule: Regla delta paralela (aproximador universal)

  • Auer, P., Burgsteiner, H., & Maass, W. (2008): "A learning rule for very simple universal approximators consisting of a single layer of perceptrons." Neural Networks, 21, 786–795. DOI https://doi.org/10.1016/j.neunet.2007.12.036
  • Fernandez-Delgado, M., Ribeiro, J., Cernadas, E. & Ameneiro, S. B. (2011): "Direct parallel perceptrons (DPPs): Fast analytical calculation of the parallel perceptrons weights with margin control for classification tasks." IEEE Transactions on Neural Networks, 22(11), 1837–1848. DOI https://doi.org/10.1109/TNN.2011.2169086

Optimización convexa

  • Castillo, E., Fontenla-Romero, O., Alonso-Betanzos, A. & Guijarro-Berdinas, B. (2002): "A global optimum approach for one-layer neural networks." Neural Computation, 14(6):1429–1449. DOI https://doi.org/10.1162/089976602753713007
  • Fontenla-Romero, O., Guijarro-Berdinas, B., Perez-Sanchez, B. & Alonso-Betanzos, A. (2010): "A new convex objective function for the supervised learning of single-layer neural networks." Pattern Recognition, 43(5), 1984–1992. DOI https://doi.org/10.1016/j.patcog.2009.11.024

Gradiente descendente con restricciones [constrained steepest descent]

Optimización no-suave [non-smooth optimization]

Gradientes conjugados


Más variantes del perceptrón

Spiking perceptron (biológicamente plausible)

Sign-constrained perceptron (¿biológicamente plausible?)

Shifted perceptron

  • Cesa-Bianchi, N. & Gentile, C. (2006): "Tracking the best hyperplane with a simple budget perceptron." In COLT'06 Proceedings of the 19th Annual Conference on Learning Theory, pp. 483-498. Pittsburgh, PA, June 22 - 25, 2006. DOI https://doi.org/10.1007/11776420_36
  • Cavallanti, G., Cesa-Bianchi, N. & Gentile, C. (2007): "Tracking the best hyperplane with a simple budget perceptron." Machine Learning, 69, 143–167. DOI https://doi.org/10.1007/s10994-007-5003-0

ROMMA

NORMA

Perceptrón pasivo-agresivo

Ballseptron

  • Shalev-Shwartz, S. & Singer, Y. (2005): "A new perspective on an old perceptron algorithm." In COLT'05 Proceedings of the 16th Annual Conference on Computational Learning Theory, pp. 264–278. DOI https://doi.org/10.1007/11503415_18

Perceptrones tolerantes al ruido


Más sobre propiedades y limitaciones del perceptrón

  • Muselli, M. (1997): "On convergence properties of pocket algorithm." IEEE Transactions on Neural Networks, 8(3):623–629. DOI https://doi.org/10.1109/72.572101
  • Ho, C. Y.-F., Ling, B. W.-K., Lam, H.-K. & Nasir, M. H. U. (2008): "Global convergence and limit cycle behavior of weights of perceptron." IEEE Transactions on Neural Networks, 19(6):938–947. DOI https://doi.org/10.1109/TNN.2007.914187